If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+13x+25=0
a = 1; b = 13; c = +25;
Δ = b2-4ac
Δ = 132-4·1·25
Δ = 69
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-\sqrt{69}}{2*1}=\frac{-13-\sqrt{69}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+\sqrt{69}}{2*1}=\frac{-13+\sqrt{69}}{2} $
| x^2+13+25=0 | | x^2+13+55=0 | | -2x+(-6)=-6 | | 5y+11.3=90 | | -48+11x=-70 | | -2q-3=-2(2q+10 | | 6+8x=10-4x | | 1⁄2(4e-16)=1⁄3(3e+6) | | 6+8x=10+4x | | (x+45)+60=180 | | -3f+7=2f+32 | | d8=12.5 | | 12.5=d8 | | 24x=32+12x | | 24x=32+12 | | 2x=−96 | | d+24=d-33 | | x+3+7(x-2)=2x+5+5 | | 1/2(4e-16)=1/3(3e+6) | | 8x=72−4x | | 8x+4=18+6x | | 4x-7=17x | | 4(d+6)=3(d-11) | | 243^x=(1/27) | | x=23^3-3*23^2*19+3*23*19^2-19^3 | | 2(c-7)=c+9 | | 5x–5=3x–9–2–31–1 | | -2x2+6x+2=0 | | x/2+(x-2)/4=1 | | 3x2+5=0 | | 3n+18=0 | | b=(-2) |